Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8122, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065932

RESUMO

Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, contributing to myelination and myelin repair. OPCs contact axons and respond to neuronal activity, but how the information relayed by the neuronal activity translates into OPC Ca2+ signals, which in turn influence their fate, remains unknown. We generated transgenic mice for concomitant monitoring of OPCs Ca2+ signals and cell fate using 2-photon microscopy in the somatosensory cortex of awake-behaving mice. Ca2+ signals in OPCs mainly occur within processes and confine to Ca2+ microdomains. A subpopulation of OPCs enhances Ca2+ transients while mice engaged in exploratory locomotion. We found that OPCs responsive to locomotion preferentially differentiate into oligodendrocytes, and locomotion-non-responsive OPCs divide. Norepinephrine mediates locomotion-evoked Ca2+ increases in OPCs by activating α1 adrenergic receptors, and chemogenetic activation of OPCs or noradrenergic neurons promotes OPC differentiation. Hence, we uncovered that for fate decisions OPCs integrate Ca2+ signals, and norepinephrine is a potent regulator of OPC fate.


Assuntos
Cálcio , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Norepinefrina/farmacologia , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Córtex Cerebral
2.
Nat Methods ; 18(10): 1253-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594033

RESUMO

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neuroimagem/métodos , Animais , Astrócitos/metabolismo , Sinalização do Cálcio , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Software , Antígenos Thy-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...